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Question Answer Marks Part Marks
1 (a +1ib)* = (a* — b*) +i.2ab B1
(@®—b*)=21 and ab=-10 M1 | Comparing real and imaginary parts
e.g. eliminating one variable and solving for the other M1 | Allow implied by e.g. a=5,b=2
(orv.v.)
a=x5 b=+2 Al | Ignore any complex answers
2 Ya=-2 and Zaffi=3 B1 | Both (afy = —7 not required)
a’+ P+ =Cay-2Zapf =2 MIA1 | FT
1 real and 2 complex (conjugate) roots B1 | Accept any comment that “not all
roots are real
Alternative
Form an equation with roots %, 8%, v% M1A1
V42" —19y-49=0
b B1 | FT
Yal=-— =2
a
1 real and 2 complex (conjugate) roots B1 | Accept any comment that “not all
roots are real
3(1) B3 | B1 Starts at (1, 0)
— B1 Decreasing spiral
4 B1 All (essentially) correct
,
3(ii) 1 ZJir 1 M1 | Attempt to integrate k(1 + ) *
A a = —
24 (1+0)
.| :|27r A1 | Correct integration
=1
2
1+0],
1 T Al | Correct answer
=2/ 1- or
1+27 1+27
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Question Answer Marks Part Marks
4 : 1 . B1 | at least X correct
X=t——and y=2
4
. . 1 M1 | attempted
(x)2+(y)2:t2—2+—2+4 P
t
1 A1 | Here or in the integral for S (2™
=(t + —) fraction of line below)
t
4 1 M1 | Use of formula (Ignore limits until
S=2r I 2t. (t + ;j dr final answer)
1
4 Al | In a form ready to integrate
= 4”_[ (t2 + l)dt
1
£ 4 B1 | Correct integration (FT provided it
=4r EY +t is polynomial)
1
=967 Al
5(31) e —1 M1
y=tanh 'x < tanhy=x= >
e’ +1
e +yx=e? =1 & l+x=e? (1-x) M1 | Identifying e*
. 1 1+ x Al | Legitimately obtained by taking
1-x
Allow verification by substitution
of given result
5(ii) Method I
1 5 M1 | Creating a quadratic in tanh x
t+-=4 = t"-4t+1=0
t
— =2+ \/g M1 | Solving
1+¢ M1 | (NB since | tanh x | < 1, it must be
ing Lln| — | with r= 2— 2+
Using 5 n(l—tj with ¢ x/§ and/or \/5 [= 2—«/5)
33 1443 M1 | By rationalising denominator or
x= %ln( x J =3 1n(\/§ ) direct observation (possibly from
—1+43 1443 calculator use)
= %111(3) A1 | Must be in this form
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Question Answer Marks Part Marks
5(ii) Method II
sh ch M1
ch sh
= ch? +sh? = 4sh.ch = cosh(2x) = 2 sinh(2x) M1 | Conversion to double-“angles”
= tanh(2x) = £ Al
3 M1 | Use of tanh ' x formula from (i)
= 2x=1In| *
1
2
- x= %ln(3) A1 | Must be in this form
Method III
e -1 e +1 Mi
2x + 2x =4
e +1 e -1
= (ezx —1)2 + (ezx + 1)2 = 4(ezx —IXezx + 1) M1
= " —2e" +1+e™ +2e7 +1= 4(e4“‘ 1) A2 | Al LHS
Al RHS
—6=2e" = x= %1n(3) Al | Must be in this form
6(1) HA y=1 VA x=-1 B2 | B1 for each
6(ii) w241 2% M1A1 | Attempted; correct unsimplified
y= 5 or y=1- >
(x+1) (x+1)
d_y C(x+ 1)*(2x) = (x* +1).2(x +1)
dx (x+1)?*
(x+1)22-2x2(x+1) _ 2(x-1)
(x+1)* (x+1)°
d A2 | Al for each
= 4 =0when x=1, y=%

6(iii) 3 | G1 for graph in 2 bits, separated by
| | a (FT) vertical asymptote and all
| positive
i
,l G1 for y-intercept at (0, 1) and
fotl MIN. in (approx. FT) correct place

A ) .
IR | G1 for correct asymptotic
' behaviour
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7(1) ) dy ] M1 | attempt using the Product Rule
y =kxsin2x = a =2k x cos2x + k sin2x
dy M1 | attempt using the Product Rule
and ? =kx.—4sin2x + 2k cos2x + 2k cos2x
=—4y + 4k cos2x M1 | for substn. into given d.e. or
comparison
= k=2 Al
7(i1) Comp. Fn. from m*+4=0 M1
= yc =4 cos2x + B sin2x Al | Or Rcos(2x — @) etc.
Gen. Soln. is thus y =4 cos2x + (B + 2x) sin2x B1 | FT
dy , . Bl
Then E =— 24 sin2x + 2(B +2x) cos2x + 2 sin2x
OR = 2(B +2x) cos2x if found after 4
(correctly) evaluated
Subst®. in given initial conditions M1
A=1 from x=0,y=1 Al | FT from an incorrect xsin2x term in
y
. dy A1l | FT from an incorrect xcos2x term
B= 5 fromx=0, — =1 inv'
Y
i.e. soln. is y =cos2x + (2x + %) sin2x Withhold final A mark if in
e’ complex form
8(i)(a) 12+2+6 20 M1A2 | Al scalar product; Al both moduli
cosf = ————=—
3x7 21 Give Bls for correct scalar product;
both moduli if sinf = ... used
8(1)(b) Subst®. 24,—1,21) into 6x — 2y + 3z=35 M1
2 A1A1l | Second Al is FT
> A=I=>p=1|-1
2
8(i)(c 7 20 M1A1 | AIFT
(@)c) SDOtoll;,=0OPcosf) =—x3x—=15
4 21
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8(i)(c) Alternative I
(64,24, 34) in plane = 364 +44+94=35 Ml = 4=23
= SD=1+6+2+3> =5 cao Al
Alternative II
d 35
Quote formula: SD = | | = =5 MI1Al
In| 6> 422132
cao
8(i) Similar working gives 4; = — 33 B1
Planes parallel, and on opposite sides of O, M1A1
7 21
so total distance is 3| —+— |[cos@= £
4 40
Alternative I
21
[T, has equation re | -2 | = Y Bl
3
= SDto /7, is —3 Bl
Planes parallel, and on opposite sides of O, B1 | FT
so distance between them is 5 — —% = %
Alternative 11
Quote Sh. Dist. formula for P(%, -1, %) to 71, M1 | or using distance from any point in
[1, or 11, to other plane
AlAl
oo 2O 4D 6121 91,
2
\ V12° +4% +6° \ 14
93 1 ) Ml
@ Full elimination of x: /= I ———————.sinh#do
cosh” #.sinh &
= I= jsechzé? déo Al
= tanhé (+ C) Al
e sinh @ Al | (AG)
=—— (+C) from
X cosh @
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9(ii) dy M1A1
secy=x=>secytany—=1
dx
Use of tan y = q/sec’ y—1 Mi
dy 1 Al | AG
to get a = =
xt~1 Ignore lack of reason for taking the
+ve sq.rt. (e.g. from +ve gradient of
sec” ! curve)
9(ii1 1 M1A2 | By parts
(i) J.sec’lx.—zdx yP
X
-1 -1 1
=sec’'x. ——|— . ———dx
X j X o oxx' -1
-1
—sec x 1
= + dx
X ’[ x*yx? -1
el 2 Al | using (i)
_see  x X 1 0
X b
Alternative
_ d 1 M1
Use u=sec'x = = —
dv  x/x* -1
= secutanudu =dx
_ 1 . Al
= Jsec 'x.—dx= Jusmu du
X
2-stage integration by parts: M1
Iusinu du=-ucosu+ J.cosu du
= —ucosu +sinu (+C)
Correctly turning this back into Al
-1 2
_ —sec x+\/x 1(+C)
X b
10(1) 1 A4 B C M1 | Correct form
= +—+
(k-Dk(k+1) k-1 k k+1
Equating terms / substn. / cover-up M1 | Method for determining constants
1 1 1 Al
=_2 _ -, 2
k-1 k k+1
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10(i1) L 1 LS| o o M1 | Splitting up
e LRI LI I,
k:3(k—1)k(k+1) k:3k—1 k:3k+1 k:3k
=1 {% +i+1l4 4+ ﬁ} +1 {% T #} M1 | Attempt at cancelling of terms
-atit. +ﬁ+§}
=1 {% + i} +1 {% nil} {% + %} Al | Correct ones clearly identifed
=Ll {% _ ﬁ} =i Al | Legitimately shown (AG)
Limit (S,) asn > 0 is S= 75 B1 | FT
Alternative
= (k=Dk(k+1)  * &5 k(k=1) * =5 k(k+1
_ %(% TR RS n(nl_l) )_ M1 | Clear listing of terms
35t )
All correct and ready to cancel Al
=1 2n(1,+1) Al | Legitimately shown (AG)
Limit (S,) asn > o0is S= & B1 | FT
10Gi) | £ >K —k=k(k—1)(k+1) B1
1 1
RN
k> (k-Dk(k+1)
10(iv) © B1 | Given result justified
Y s> l+i=3=4
k
k=1
00 1 00 Ml
> k—3:1+§+z —<1+i+
k=1 k=3
4 1
=3 (k=Dk(k +1)
=1+i+5=2 Al | Given result justified
11(i)(a) g [aet bg af +bh B1
ce+dg cf +dh
det A=ad—bc and det B=eh—fg B1
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11(i)(b) det(AB) = (ae + bg)(cf + dh) — (af + bh)(ce + dg) M1
and some attempt to multiply out
= acef + adeh + bcfg + bdgh Al | Legitimately shown
—acef — bceh — adfg — bdgh
= adeh — bceh — adfg + bcfg
= (ad — bc)(eh - /g)
11(ii) CLOSURE: A,Be S = detA=detB=1 M1 | Attempted
and above result = det AB=1 = ABe S Al | Convincing
(ASSOCIATIVITY: given)
1 0 B1 | Must show why I € S and not just
IDENTITY: 1 = 0 1 €S say that I is the identity
sincedetI=1.1-0.0=1
a b B1 | for stating A ' (or explaining that it
INVERSES: A = ge S=>A"! exists)
c
d -b
= es
-c a
Since da — (-b)(—¢)=ad —bc=1 B1 | for justifying its membership of S
Hence (S, xy) is a group, G.
11(ii)(a) |[detK=10-ii=—i’=1 (soK € S) B1
11(iii)(b) | Attempt at powers of K; K* & K° M1
, (0 i , (-1 0 Al
K=\ and K’ =
i -1 0 -1
L (-1 - C (0 - Al
NB K'= ) and K’ = ]
-i 0 -i 1
= K°=1 and H has order n =6
11(iii)(c) | e.g. The set of rotations about O through multiples of B1 | FT for any n
60°
I —i
OR (K*) = group generated by 0
—1i
Justifying the two are isomorphic B1 | e.g. stating both are cyclic, etc.
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12(1) Method I
F,.2(0) —%sinz(ZH) F,1(0) M2 | M1 all F, terms
M1 sin28 form
_ (cz + Sz) (c2n+4 + S2n+4)
—%(ZSC)z (C2n+2 +S2n+2)
= 02n+6+c2s2n+4 +S202n+4 +S2n+6 Al
_czsz(czmz +S2n+2)
= C2n+6 +S2n+6 EFn+3(0) Al AG
Method 11 M1 | Use of sin28 form
_ o2t g _Szcz(c2n+2+szn+2)
= 02n+4 +S2n+4 _S2c2n+4 _C2S2n+4 Al
_ (1—S2)62"+4 +(1_62)y2n+4 M1
= C2n+6 +S2n+6 EF,,+3(8) Al AG
12(ii)(a) Useof z=c+is and z ' =c—is M1
z4+z ' =2c and z—z"" =2is A2 | Al for each
12(ii)(b) Method I
(20)6 = (z+ z™! )6 =z 46z +152* +20 M1
+15z7%2+6z+z2°
=2c0s60 + 12c0s46 + 30co0s260 + 20 Al
_(25)6 _ (z _ )6 — 5 62 +1522 —20 B1 | FT (Must have — sign)
+15z%2 -6z +z2°
=2c0s60 — 12cos48 + 30co0s26 — 20
Subtracting;: M1
64(c +5°)=12(z* +z*)+ 40
=12 .2co0s460 + 40
Dividing by 8: 8(c®+5°) =3cos40 +5 Al | AG
Use of cos46 =2c0s260 —1 and 1=cos20 + M1
sin’20
= +5° :%(20052 26’) + (—%+§)(cos2 20 +sin? 26) Al | AG
= cos’ 20 +1sin’ 20
© UCLES 2017 Page 10 of 11
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12(ii)(b) | Method II
cos40 =Re(c + is)’ M1
=c*—6c’s* +5* =c4—6c2(1—c2)+(1—02)2 Al
= 8c* -8c* +1
c6+s6=c‘/’+(1—cz)3 =c®+1-3c* +3c¢* =¢° M1
=3¢ -3c¢* +1 Al
so that 8(06 +S6) =3cos460 +5 Al | AG
Use of cos40 = cos™26 —sin’20 M1
and 1=cos®20 +sin*20
= 8(66 +S6) =3cos40 +5 Al | AG

=3(cos™20 —sin’26) + 5(cos’26 + sin’20)
= ¢®+5°= cos’ 20 +Lsin” 20
12(ii1) Case for n =1 established in (ii) (b): B1 | noted explicitly (possibly at end)
B1 | i.c. the case for n =k
Assume ¢4 4+5%* 4 <cos? 20+ sin’ 20
2k +1
A clear statement of the result must be given, M1 | attempt at n =k + 1 case using (i)’s
possibly within what follows identity
Then czk+6 +S2k+6 —
p2krd 2k —%Sinz ZH(CZkJrZ +S2k+2)
<cos’ 20+ sin? 20 — Lin? 29(02’” 2, e 2) M1 use of the_lnductlon hypothesis
Skl 4 (i.e. the n = k case)
M1A1 itti in’ i
—cos2 20+ sin? 20 — Lgin? 26(62“ 2, kel _ik) splitting up the sin"24 term into
ok +2 4 2 two equal parts
2 ) Al
<cos“ 20+ sin“ 260
2k +2

Proof follows by induction since sin’26 = 0 and
given result that ¢**** +s7 2 = ZL"
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